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Partial solutions are obtained to Halmos' problem, whether or not any 
polynomially bounded operator on a Hilbert space H is similar to a contraction. 
Central use is made of Paulsen's necessary and sufficient condition, which 
permits one to obtain bounds on H S IIII s- '  II, where S is the similarity. A natural 
example of a polynomially bounded operator appears in the theory of Hankel 
matrices, defining 

on 12~ 12, where S is the shift and F I the Hankel operator determined by [ with 
Y E  BMOA. Using Paulsen's condition, we prove that R~ is similar to a 
contraction. In the general case, combining Grothendieck's theorem and 
techniques from complex function theory, we are able to get in the finite 
dimensional case the estimate 

II s II II s-'ll --< M ~ log(dim H) 

where STS-' is a contraction and assuming IIp(T)II--< M lip IL whenever p is an 
analytic polynomial on the disc. 

1. Introduction 

A well-known theorem due to Von Neumann  [17] asserts that  if T is a 

cont rac t ion  on a complex Hi lber t  space H, then the inequali ty 

(1) IIp(T)II--< lip I1~ - sup Ip(z)l 
z E D  
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holds wherever p( z )  = E ajz j is an analytical polynomial on the disc D = {z ~ C; 

J z I =< 1}. If T is similar to a contraction, which means that STS -~ is a contraction 

for some invertible operator S on H, clearly 

(2) IIp(T)II II S IIII S -IlIIIp MIIP I1 . 

A problem of P. Halmos [5] is the question whether the converse property holds, 

i.e. if(2) is valid (T is then said to be polynomiaily bounded), T is similar to a 

contraction. 
It was proved by Sz.-Nagy [15] that if T satisfies supk~z II T~ Jl < oo, T is similar 

to a contraction. Rota [14] proved that every operator with spectral radius less 

than 1 is similar to a contraction. 
We prove the following two results in this paper. 

THEOREM 1. Let Rr be the operator on 12~]~12 given by 

where S is the shift and F t the Hankel operator corresponding to f with f(0) = 0, 

f '  E BMOA. 
Then there exists an invertible operator A on H = 12~)12 such that ARrA-1 is a 

contraction and jJa IJJlA-111 _-< CIIf'IIBMOA" 

This operator Rr was introduced by R. Rochberg in [13] and provides natural 
counter examples for several questions in operator theory, for instance, power 
bounded operators which are not polynomially bounded (cf. [liD. In [12] it was 
shown that Rt is polynomially bounded when f '  E BMOA (this condition is only 
known to be sufficient). Theorem 1 is an improvement of this result (cf. [12], Q5). 

THEOREM 2. Let T be a polynomially bounded operator on an n-dimensional 

Hilbert space H, i.e., satisfying condition (2) with some bound M. Then there exists 

an invertible operator S on H such that STS -1 is a contraction and JJS IIlls-'ll--< 
M 4 log n. 

This is the main result in the paper. Its proof is based on Grothendieck's 

inequality for bilinear forms and methods of Carleson measures. 
The main part of this work was done while the author was visiting Odense 

University. The papers of V. Paulsen on the similarity problem were brought to 

his attention by U. Haagerup during this time. 



VOI. 54, 1 9 8 6  POLYNOMIALLY BOUNDED OPERATORS 229 

2. Paulsen's similarity theorem 

In [9], Paulsen proves that if A is a unital operator algebra (here A is the disc 

algebra A (D)) and p a completely bounded, unital homomorphism of A into 
the algebra of bounded operators on Hilbert space B(H), then there exists a 

similarity S with tlslllls-'ll--tl011~b and such that S ~p(.)S is a completely 

contractive homomorphism. 
It follows that T E B (H)  is similar to a contraction iff there is a constant K so 

that 

(3) A ,  = Ilx, II , [fYjll = 

whenever (~o,~)~-,.i-~, is an (n x n) matrix of analytic polynomials (n = 1,2 . . . .  ) and 

{x,}7:,, {yj}~=~ are vectors in H. Here we define 

~lfjl 2~-I tz t< l  

More precisely, there is an invertible S E B (H)  such that II S II II s-I II ---- K and 
S-'TS is a contraction. 

Both Theorems 1 and 2 will be derived from this result. 

3. The operator R r 

For 0 < p < 0% let HP(D) =- H p denote the Hardy space of analytic functions f 

on D satisfying 

• x l i p  

II[llup - s u p ( f  I[(re'°)lPdO) < oo. 

These functions have radial limit a.e. and H p may therefore be viewed as a 

subspace of L P(T), T = circle. 
Under the usual duality ( / , g )  = f . [ ~ ,  the dual of H 1 identifies with the space 

B M O A  of analytic functions on D with boundary values in the space BMO of 

functions of bounded mean oscillation. (More details on these matters can be 

found in [4].) Factoring H'-functions as the product of H2-functions, B M O A  is 

identified with a subspace of the compact operators on H 2, the Hankel matrices. 

We use the standard notation 

1 f2,, F1=~f( i+j)e ,@e~ f o r / E B M O A ,  t (k)=~--~ jo  f(e'O)e-'k°dO. 
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In [13], R. Rochberg considered the operator 

acting on 12~)! 2, where S is the shift operators. Using the fact that 

S*F~ = FrS = Fs.r 

the action of an analytic polynomial ~o on Rr is easily computed: 

/q~ (S*) F,'~s')r) 
¢(Rr) = 

o ~(s)J 

Rr is power bounded if[ [ ' is in the Bloch-class ([11]). Next we repeat the 
argument appearing in [12] to show that [ 'E  BMOA ff  Rr is polynomially 
bounded. Assume [(0)= 0. We need to prove 

(4) I(f,~p'h) <-- C II['llB-o.II ~ Iloll h I1,,' 

for ~p an analytic polynomial and h C H 1. 
Define the "square-function" 

fV \ 1/2 s ( ~ ) ( o )  = I~'(z)12dxdy) 
e 

where Fe is the Stolz-angle in the point 0 E T. 
Recall that if f is analytic on D, then IIS(OII,~ Ilfll,,'. Since f(0) = 0, it follows 

from the H1-BMO duality that 

Writing h~p' = ( h e ) ' -  h'¢, the second factor estimates as l[ h~p II,,' + II'O IHI h I1,,', 
implying (4). 

4. Proof of Theorem 1 

For T = Rr, Paulsen's condition on complete boundedness reduces to the 
inequality 
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where ~.~ C A (D) and x, yj E H 2. Here M ( A  ) stands for ,Mr. (A); see Section 2. 

Again we may estimate (denoting dxdy by dz) 

~Q i,]XiYl = BMOA ~ ~.jx~yj z dO 

and write 

(6) z (z z l I I 

Clearly E ¢~jx~yj is in H L and 

Hence, by the Cauchy-Schwartz inequality, we may evaluate the contribution of 

the first term in (6) by 

f(f , < ,, ,, "=. 

Denoting II(~,,)IIM(A, = M for convenience, estimate 

2 1/2 1/2 

< M  f(fr~ [Z~"'x:Y'l d~) ~o= f(f,~. (EIx:I2)(Ely,12)dz) dO 

denoting X~(z ) = E e,x,(z ) and Y~(z ) = E ~jyi(z). 

(The (e~) and (8,) refer to independent sequences of Rademacher functions on 
the Cantor group {1 , -  1}N.) 

At this point, we invoke the following lemma, the proof of which is 
momentarily postponed. 

LEMMA 1. There is an absolute constant C satisfying 

(7) [ f ' ( z )Hg(z  )[2dz do < cllfll.21lgll.2 
e 

for f, g e H2(D). 

This lemma permits one to majorize (*) by (f = X,, g = Y~) 

f 2 \ 1/2 / \ 1/2 

CM 

Together with the previous estimate, this gives (5) with K = IIf'IIBMOA- 
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PROOF OF LEMMA 1. The left member is dominated by fS(f)(O)g*(O)dO, 
where g*(O)-sup,~r, lg(z)J denotes the nontangential function. By 
Cauchy-Schwartz and well-known estimates on harmonic functions (see[4]), we 
may further majorize by 

II s ff)ll~. I/g* tl2 =< cII f I1.,11 g I1~ 2 • 

5. Use of Grothendieck's theorem 

N. Varopoulos and S. Peller obtained estimations on [{p(T)[[ when T is a 
power bounded operator on a Hilbert space H, say 

sup II T" II--< M 

and p an analytical polynomial of a certain degree d(p). The following 
inequality 

(8) [[p(T)II =< M 2 log d(p).  sup [p(z)[ 
z E D  

can be derived from Grothendieck's fundamental theorem (see [7], p. 68, for 
instance). An example due to Davie (see [11] for details) shows that (8) is the 
best one may hope for. 

The purpose of this section is to apply the same method to get a bound on the 
number K appearing in (3), involving maxi.jd(~pi.j). The next lemma is the first- 
step in the proof of Theorem 1. 

LEMMA 2. Suppose T E B (H) satisfies supn [I T~ II <-- M. Then 

] ~', (~oi,/(T)x,, y,) 1 

(9) ( ) _-<C maxlogd(q~,.,)...M~.II(~,.,)IIM,A,, x, II ~ ~ l ly ,  ll = 

where d(q~) is the degree of the polynomial ¢. 

PROOF. Denote { W, } a system of diadic de-la-Vall6e-Poussin type kernels 

(11 w, II,--< 3) supported by consecutive diadic intervals in Z÷ and forming a 
partition of unity, 

E [ W , ( n ) [ = l  = ~ V¢̂  (n) for n EZ+. 
/t 

Write q~i~.i = ~pi.j * W,. Clearly (9) reduces to proving for fixed a 

< M2 IlyJll 2) 
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Since W~ E H' ,  we may factorize W, = g. h where g, h E H 2 and Ilg 112It h 112---- 3; 

g(O) = ~ ,ko eke , h(O) = ~ dte ~l°. 

Then 
~b ,~j(n) = k+~=. ckd,¢,., (k + l) 

and 

(11) 

denoting 
x~ = x, llx, ll-' 

Since the Tkx', (T*)'y~ in H satisfy 

II T~x;II--< M, 

<~.,(Z)x,,y,> = ,~  IIx, lilly, Hckd,~b,.,( k + I)< T~x;,(T*)'y~) 

and y;=yitly/]{ -l. 

II(T*)'y~II ~ M 

it follows from Grothendieck's inequality that 

( I I )=  < g~M2 sup l ,~ ll x, ll ll y, llckd,,~,,, ( k + l )&kt,.t I 

where the supremum is taken over all 1-bounded scalar systems {s,.k } and {t,.t}. 
Now 

5'. IIx, lilly, IIc~d,~,., ( k + l )s,.kt,., 

= YT { ~ IIx'll(~ cks"ke-'k*)llY'll(~ d'tj"e-"*)~°"'(e'~)} m(dqj) 

can be estimated by 

'l 'q~,.,)]IM(A). f{  ~. 11 X, ] r l ~  CkS,.ke-"" 2], ,/2[~,, tl yi 112 / ~ dttj.,e-U'l:}"Zm(d~b) 

which is bounded by 

from where the lemma follows. 

6. Interpolation in the disc by polynomials of low degree 

If T is an operator on an n-dimensional Hilbert space, T asssumed power 
bounded, its spectrum Spec(T) consists of at most n points in the closed unit disc 
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/). Our purpose is to prove (3) replacing the q~.i by analytic functions coinciding 
with ~P~.i on Spec T and constructed piecing together polynomials of degree N 
(log N -  log n)composed  with a suitable conformal transformation of D. This 
will allow one to get (3) from inequalities as proved in Lemma 2. In this section, 
we present the required result on interpolating a finite set of points in D by a 
polynomial of small degree. The problem of piecing together will be presented in 
the next two sections. 

The following lemma gives a rough estimation on polynomials obtained by 
Lagrange interpolation. 

LEMMA 3. Let (as)~_j~_n be distinct points in the disc {z E C;[z  [< 1 - e }  
(e <~) and denote for f E A (D ) by L f  the unique polynomial of degree n - 1 

satisfying 

Lf(aj) = f(aj) forj  = 1 ... . .  n. 

Clearly L is a linear operator. Moreover 

IILfll~ = _2n2 sup tf(z))  where S = e/n 2. 
Izl<l-,~ 

PROOF. Clearly L = L.  where inductively 

L , f  = f(a,),  

Lkf = Lk-, f  + 1-[ z--L-C-~ [ f (ak)-  Lk-,f(ak)]. 
7<'k a k  - -  ai 

Since f - L k - l f  vanishes on {am ..... a~_~}, we may factorize 

(12) 

Hence 

and 

( f  - L k _ , f ) ( z  ) = Vl  z-LT-& 
~..~ 1 - tijz "q~(z)"  

z - a i ~p(ak) Lf f  = Lk-lf  + ~ 1 - dj. ak 

j ~ k  

By (12) and a simple computation (since 8 ~ e) 

l~o(ak)[_- < sup Iq~(z)l_-< ( sup If(z)l+llLk-~fll~)e c~k~'~. 
Iz1=1-8 \l~[~;l-8 
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Therefore 

IILdll~llL~-,rll~+ 2"-'e-'~l~(a,,)[=< e-2"eC'~""(llL~ ,t'll~+ sup If(z)l) 
and iterating 

IILfll~--< e -"~ec'~,`)"2 sup If(z)l 

from where the lemma follows. 

LEMMA 4. A s s u m e  ( aj )l~=j~° are points in the disc { z E C ; ] z I < 1 - e }. Taking  

N = ~-2n4, there is a linear operator I ' A  (D)---~ ~N into the space of  polynomials  

of  degree N, satisfying 

(i) Ilzll~-~--< 3, 
(it) I f  ( a j ) = f ( a j )  (1 _-j  < n). 

PROOF. Consider a kernel K verifying II g I1~',~,--< 2, g ( j )  >- 0 and 

/ ( ( j ) = l  i f l j l < N / 2 ;  l ( ( j ) = O  i f l j l > N .  

Let L be the operator of Lagrange interpolation for the set {al,... ,  a, } discussed 
above and take 

I f  = ( f  * K ) +  L [ f  - ( f  * K)] 

thus satisfying (i). Also, ~ = en-2, 

ltIfll~<-_211flb+e -°2 sup Y~ Ik/) l lz l '  
Iz l< l - ,s  i e  N,'2 

--< 311fll~ 
by the choice of N. 

7. Carleson measures and Beurling type function systems 

As usual, i f /z  is a positive measure on the disc D, denote 

_ su n p, (R (I)) 
I I~ l l c -  ,, I!l  

where the supremum is taken over all intervals I in the circle T and R (I) defined 

as 

R ( I ) =  {z E D ; z / I z  I E I and 1 - I z  I < ~ol Zl}. 
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If {fo} is a finite set of H' functions, then 

fo maxlfo(=)l.(dz)_-< CII. IIcf~ max[fo(e'°)idO., 

PROOF. For a E L'(~'),  denote 6 the harmonic extension of a and a* the 

non-tangential maximal function; thus 

&(z) = a * Pz (P~ = Poisson kernel at z) and a*(0)  = sup 6(z) .  
z E F o 

It follows from the factorization of an H'-function as the product of a 

Blaschke-product and the square of an H2-function that 

fEHl~ I f ( z ) l '<=[ f l ' 2 ( z )  f o r z E D .  

Hence, defining F (O)=  max~ If.(e~")J "2, we have 

max ] f~ (z)l-<_ ie(z) 2. 

By Carleson's theorem (cf. [4]), it follows now that 

f max,f (z),lz(dz )<= f cll. llcfT 'F*(O)'2dO <~ C[[lZ "c][F"~m 

proving the lemma. 

REMARK. Lemma 5 may be reformulated as follows. Let (X,][ ]]) be a 

normed space and f a function in the vector valued Hardy space H ~ D ) .  Then 

o l l f ( z ) l l # ( d z ) < =  CIl~ II~llftl-~. 

Indeed, it suffices to take {(f, x *); x * E X*, 11 x* 11 < 1} for the system (f~) (cf. also 

[31). 
LEMMA 6. Let S be a finite set in the disc D. Suppose S~ C S and S~ C D~ where 

the D~ are simply connected disjoint open subsets of D with disjoint rectifiable 
boundaries F~. Denote F = U~F~ and tz the arc-length measure of F. Let 
S ~ C S\D~. There are H ~ functions (q~) satisfying the following conditions: 

(i) q ~ ( z ) = l  if z E S ~ a n d ¢ ~ ( z ) = O  if z E S t ,  

(ii) ~l ~ ( z  )l <= c/3-'11~, IIc where 

/3= in[ [ I  [ z - a  
a ; z E F ~  aESoUS a [ I ~'-I'~z " 



Vol. 54, 1986 POLYNOMIALLY BOUNDED OPERATORS 237 

PROOF. Denote 

Be(z)  = [ I  a-__zz 
a~so 1 -a--zz and 

Suppose ~e E H ~ satisfy 

(13) O~(z)=B~(z) -' for z @ S~. 

The general solution of (13) is then given by 

T / ~ = ~ + B ~ h ~ ;  h~EH ~. 
Hence, by duality 

a - z  
B°(z) = [I i - - ~  

a E S  a 

8. Cutting the disc 

Denote 
a-b 

in, I --sup  o 

where the inf is taken over all solutions of (13) and the sup ranges over the H ~ 

systems verifying the condition 

I max Ifol ~'~,--< 1. (15) 

Since B :  ~ has no poles outside De and (B~) -~ no poles inside/)~, we may write 

by Cauchy's theorem 

f.(s) ds f~ ~ f~ ( s )ds=  fra B~(s)B"(s ) 

and the sum in (14) is therefore dominated by 

~13-'~r If~(s)]ds<=13-'fD max[f.(z)]lz(dz). 

We now invoke Lemma 5 and (15) to bound (14) by C/3-~]]/z ]]c. Once the 

functions {~/e} are obtained with the property 

E I notz)l_-< c~-'ll~ li~ forz~D 
the ~ are given by multiplication with B e, thus ~ = ~/~B ~. Condition (ii) 

remains preserved and (i) follows from (13). 
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the pseudo-distance for a, b E D. We use the result of previous sections to prove 

the following. 

LEMMA 7. Let S C D be a set of n distinct points. There are functions {'r~ } in 

A (D) and conformal maps As of D satisfying 

(i) E z ~ ( z ) = l  i f z E S ,  
(ii) El~'~(z ) l=<const .  for z E D ,  

(iii) IA~(z) l  < 1 - n -~ if  ~ o ( z ) ~  0. 

PROOF. Partition D in disjoint regions of the form 

Rk.o ={z @ O ; n  -k < l - l z l < n - k * ' , l A r g z  - O [ < n 2 n  -~} 

and consider the subfamily {R,} of those regions for which S, = S f'l R , / O .  

Write a ~ k if R, is an Rk.o. Define 

D , = { z E D ; d ( z , R , ) < l - 1 / n } ;  S " = { z E S ; d ( z , D , ) > l - 1 / n } .  

Notice that by definition of the Rk, o, the index set of a can be partitioned in 6 

subsets for which the £3~ are mutually disjoint. 

For z E F . = - O D .  

I-I I-i--2--~1 = z - a  > 1--I d ( a, z l >= ( 1 - 1 /  n ) " > c. 
a ~ S a  U S  = a ES ,  d (a,z )~_l -  I ln  

Fix an interval I C T  and let n-k '<lI l<=n -k'+~. Denote A the arc-length 
measure. Then 

A(uro n R(1))_-< >~, 2~ ~(ro n R(1)) 

~ cII1+ C >~+2 n2-~'n ~ C'lIl" 

For fixed a, it follows from the construction that there is a point a~ ~ D such 

that 

d ( z , a . ) <  1 - n -6 wherever z 6 S\S*. 

Thus the conformal map 

Z - -  aa A I ~ 

maps S\S  ~ inside the disc []z 1< l - n - 6 ] .  Application of Lemma 6 gives 

functions q~. E H ® with the properties 
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¢ . ( z ) = l  i f z E S ~  and ~o.(z)=O i f z C S  ", 

c,. 

Since S = U S., 17 (1 - ~o. ) = 0 on S and we may write by expanding the product 

l = E & ~ ( z ) ~ o . ( z )  f o r z E S  w h e r e & . E H  ®, [~b.I < e c '  

Let r, = &,¢,. Clearly (i), (ii) hold and 

z E S ,  " r ~ , ( z ) # O ~ l A , , ( z ) l < l - n  -6 

9. Proof  of  T h e o r e m  2 

Replacing T by T~ -= ( 1 -  e)T, an operator with spectrum contained in D is 

obtained, still satisfying IIp(T~)II --< MIIP I1o. Since, by a compactness argument, it 
suffices to obtain the similarity (with fixed bound) for T., we may as well suppose 

S -= Spec T C D. As a consequence of Lemma 7 above, there are functions {r.} in 

A ( D )  and conformal mappings A~ s.t. 

(16) ~ r~ (z) = 1 on s,* 

(17) E Ira I< C, on D, 

(18) I A , , ( Z ) I <  1 - n -6 if r~ (z )¢O.  

Fix a. From Lemma 4 and (18) a linear operator /~ : A ~ ~ (N = n 4÷~2) is 

obtained such that for ~b E A 

(L~oM)(z)=(~oA,)(z) for z E S, r . ( z ) f i  0. 

For ~ E A ( D ) ,  
= ~ 1"~(L(q~ oA~')oM) on S 

and we may therefore write 

(19) ~o(T) = ~ ~'a(T)po(~o)(T~) 

denoting p.(~o)  = Ia(q~ oA~'),  T~ = A . ( T ) .  
Write by factorization % = ?~-~ with I f~ 12 = I~', I = [~'~ 12 o n  T. Notice also 

sup ItA-(T) k II =< M. 
It 

Given a matrix (~o,j) in A, it now follows from Lemma 2 and (19) that 

t In case of multiplicity ] > 1 of some z E $, the conditions E~ '~)(z)=0 for 1 _-< i ~ j  must be 

added. 
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(20) 
=< C(Iog  n ) M 2 ~ ,  [[po(,p,.,)II~(A, II÷,(Z)x, II 2 II~.(T)*Y, II 2 

tl 

Since IlPo (~,,)IIM,A)---- < IIio IIIl(~" °A:211M'~'-- --- C I l ( ~ , , ) b ( ~ ,  

2" ~ 1/2 / . ~ 1/2 

) 
For  any  x E H, the m a p  ux : A  ~ 12, ux(p) = p ( T ) x  is in o p e r a t o r  n o r m  b o u n d e d  

by II x II. m.  Hence ,  by [21, Coro l la ry  2.8, zr2(ux ) <- c=ll x II where  6"2 is an abso lu te  

constant .  This  means  that  

< U< ) 11 ( 2 1 )  ~,ll~o(T)xlr)"2<--fMIIxll 2 l ~ o l  ~ 

for  (~,) C A. By cons t ruc t ion  

ll(  )" 11 I1(  / l'2u II"  I ~ l  ~ = I~ol = = I~ol  -__c 
/ II L ®(T) 

and similarly for  the sys tem ( ~ ) .  

Using (21), it the re fo re  follows that  

which is (3) with K = C M ' l o g  n. This  comple t e s  the proof .  
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